ALL LINEAR COISOTROPICS IN 7*T" MAY BE FOLIATED BY
STANDARD SUBTORI

1. INTRODUCTION

A submanifold C of the symplectic manifold (M, w) is said to be coisotropic if (TC)* C TC;
i.e., C is coisotropic if the symplectic orthocomplement to its tangent bundle is a subbundle
of the tangent bundle itself. In particular, a coisotropic submanifold of the least allowable
dimension is a Lagrangian submanifold.

Every coisotropic submanifold is endowed with a characteristic foliation, also referred to
as a null foliation. In short, the leaves of the characteristic foliation of C are the integral
curves of the Hamiltonian vector fields of its defining functions.

All of our results pertain to linear coisotropic submanifolds in 7*T". A d-codimensional
linear coisotropic is of the form C = T" x {vy - = ... = v4-§ = 0} for v; € R™ (£ are
symplectically dual to x € T™). In this note, we show that

Theorem 1.1. Let C C T*T" be any linear coisotropic submanifold. Then there exists a lin-
ear symplectomorphism ® of T*T™ for which ®(C) = C, where the leaves of the characteristic
foliation of C, projected down to T", are dense in standard subtors.

(A standard k-subtorus is any k-dimensional subtorus of T™ of the form T* x {point}.)

2. MODELS ASSOCIATED TO LINEAR COISOTROPICS

Let T" = R"/Z". As coordinates on the symplectic manifold (T*T", w), we take (x,&),
where w = d€ N dx. We study linear coisotropics in T*T", defined as follows:

Definition 2.1. A d-codimensional linear coisotropic submanifold C C T*T™ has the form
C:C(Vl,...,vd) :Tz X {Vl‘é-:...:Vd‘é-:O},
where {vy,...,vy4} C R" is linearly independent over R.

A simple linear coisotropic is {&; = ... = & = 0}. In fact, locally every coisotropic is of
this form [1, Theorem 21.2.4].

We say Ci(vy,...,vq) is symplectically equivalent to Co(wy, ..., wy) if there exists P €
GL,(Z) such that Pv; = w; for each j. Such a P descends to a diffeomorphism of the torus,
which then lifts to a symplectomorphism of 7*T™ mapping C; to Cs.

With the goal of finding ‘model’ linear coisotropics, we first consider the special case where
v; € Q". Consider the rational linear coisotropic C(vy,...,vq). We may clear denominators
and take the v; € Z". We identify C with the matrix C' = (v4]...|v4), and call this a
representation of C. Since the v; are independent, C' has rank d. Equivalently, the v; are a
basis for a rank d sublattice of Z".

Proposition 2.2. Let D be a PID, and let A € M,xa(D) have rank d. Then there exist
invertible P € M, «,(D), Q € Myxa(D) such that PAQ = (a1€1] ... |aseq), where all a; # 0.
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This result is adapted from [2, Section 3.7]. Thus, there exists P € GL,(Z), Q € GL4(7Z)
for which PCQ has the diagonal form described in the proposition. Note that (aie1]|...|aqseq)
represents the coisotropic {&; = ... = §; = 0}. The right multiplication by ) merely amounts
to a change of basis for the aforementioned rank d sublattice, so C' and C'() represent the
same coisotropic. Hence, the existence of P tells us that C is symplectically equivalent to

the ‘rational model’ {§; = ... = & = 0}; and any two d-codimensional rational linear
coisotropics are equivalent, as they are both equivalent to this model.
Next, we allow v; € R". Given an arbitrary linear coisotropic C(vy, ..., vq), let O denote

the set of leaf closures in the foliation of C, and let .Z € O. In the rational case, leaves are
a priori closed. This implies that mp=.%, the projection of the (closed) leaf onto the torus,
is a d-dimensional subtorus. The rational coisotropic is equivalent to {{; = ... = §; = 0},
whose projected leaves are

Tl = {(1, ..., Ty Car1,- -, Cn), Tj € S'}.
for any choice of the constants c;.

Definition 2.3. A standard k subtorus in T" is a subtorus of the form T* x {point} C T".

So the d-codimensional rational model is foliated by standard d subtori. If the v; are not
assumed to be rational, then 7».% are subtori of dimension £ > d. We find ‘models’ for
arbitrary linear coisotropics, in two steps.

Lemma 2.4. We can express each v;, 1 <1 <d, as a linear combination

=3 i
j=1
such that (1) for each i, {w',...,w} } C Z" is independent, and (2) for each i, the coeffi-
cients a;'- € R are Q-independent.

Proof. The proof is the same for each v;, so fix ¢ and let v; = v = (v'---v")". Consider
the subspace spanQ{vl, ..., 0"} C Rg, where Ry is the space of reals over the rationals. The
subspace is finite dimensional; say it has dimension k£ < n. Any maximal Q-independent
subset of the spanning set {v!,... v"} is a basis. The argument is analogous for any basis
obtained this way, so WLOG take the basis {v,...,v*}. Certainly, for each i in 1 <1i < n,
there exists a unique k-tuple (ci,...,ct) € Z* (in Z*, as opposed to QF, after clearing
denominators and recalibrating the basis) for which v* = Z?Zl vl

We know that for 1 <i <k, ¢; = 1 and ¢, = 0 for j # i. In general, we have

1 k 1,5 1
v Zj:l G k &
n k N ayJ Jj=1 n
v Zj:l C;v ¢

Let «; := v7; since the v/, 1 < j < k, are Q-independent (being a basis), this choice
of o fulfills condition (2). Also, let w; = (c; ~~~c’]?)t € Z". It is clear that {w;}"_, is
linearly independent: if we were to write the n X k matrix (wy]...|wy), the & x k& minor

matrix formed with the first & rows would just be the identity matrix. So condition (1) is
satisfied. O
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The decomposition in the lemma is not unique. For example, suppose all entries in v; are
Q-independent. Then for any A € GL,(Z), we may write v; as a linear combination of the
columns of A, with the entries of A~'v; being the coefficients.

Lemma 2.5. Assume mpn.? is a k-dimensional subtorus. Then there exists independent
{uy,...,u} CZ" and for each i, 1 < i <d, there exist 3'° € R (1 <m < k) for which

k
(2.1) v, = Z B,
m=1

For fixed i, 1 < i < d, the coefficients 3! may not be Q-independent: see Example 2.7.

Proof. After decomposing each v;, 1 < ¢ < d, as in Lemma 2.4, we next pool all the W;
together to obtain the set S = {W;}lgigd,lgjgki consisting of as many as Zle k; distinct
vectors. Then we trim S by finding any maximal linearly independent subset S’; S’ must
contain exactly k£ elements, because m».Z was assumed to be k-dimensional. We relabel
elements and write S’ = {uy,...,u;}.

Then S” is a basis for spang(S). For each i, v; € spang{w},..., wj } C spang(S). Thus,
each v; can be written as a linear combination of the elements of 5. ]

This leads to our main result.

Theorem 2.6. Let C = C(vy,...,vq) for vi,...,vq € R™.  Suppose that m.L is k-
dimensional. Then there exists a linear symplectomorphism ® : T*T" — T*T" such that
®(C) = C, where the leaves of the null foliation of C, projected down to the torus, are

dense in the standard k-dimensional subtori of T™. (That is, C = C(Vy,...,V4), where
v; € RF x {0} c R".)

Proof. According to Lemma 2.5, for each 7, 1 <17 < d, we may write v; = anzl B, for
real coefficients ;. Then we have

k k
c:{z@;um-s:...:zﬂzum-s:o}.
m=1 m=1

We then form the rank & matrix (uy|...|ux), and (possibly after changing bases for the
sublattice of Z" generated by {uy,...,u;}) convert it to the normal form (ajeq|...|arex),
from which arises the coisotropic

k
C=(1.,Va), Vii=) Bhmen.
m=1

Since (uy]...|uy) is converted to (ajeq]...|ayex), there exists P € GL,(Z) such that

(Puy|...|Pu) = (a1eq] ... |arey).
Define ¢ : (z,§) — (Px, (P_l)t§>, a linear symplectomorphism of 7*T". It remains to
show that ® maps C to C. Suppose (x,€) € C. Then

k k k
Vi (P €= Bhamen - (P €= B P (amen) = Bty £ =vi-€=0,
m=1 m=1 m=1



as required.

Finally, since the last n — k entries of each v; are zero, the projected leaf closures of C are
the standard k-subtori. O

Example 2.7. Consider the coisotropic C(vy,ve) with vi = (1 0 7 7)%, vo = (e 1 e €)'. By
the method in the proof of the theorem, we may produce

C(V1,v3), vi=(10m0), v,=(ele0),
which is symplectically equivalent to C, and whose foliation is by standard 3-subtori mp4.Z =
{(xla T2, T3, 64)}-

Let C C T*T" be any d-codimensional linear coisotropic submanifold, so that C is foliated,
in T", by (possibly nonstandard) k-dimensional subtori (d < k).

Definition 2.8. Let M be a linear coisotropic that is symplectically equivalent to C. If M
is of the form {u; - £ = ... = ug - £ = 0}, where u; € R* x {0}, then we call M a model
coisotropic associated with C.

Each leaf in the foliation of any model coisotropic associated with C, projected to the
base, is dense in a standard k-dimensional subtorus T* x {point}. Theorem 2.6 tells us that
all linear coisotropics have an associated model. Careful inspection of the example shows
that models associated with a given linear coisotropic are not unique.
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