
ALL LINEAR COISOTROPICS IN T ∗Tn MAY BE FOLIATED BY
STANDARD SUBTORI

1. Introduction

A submanifold C of the symplectic manifold (M,ω) is said to be coisotropic if (TC)ω ⊂ TC;
i.e., C is coisotropic if the symplectic orthocomplement to its tangent bundle is a subbundle
of the tangent bundle itself. In particular, a coisotropic submanifold of the least allowable
dimension is a Lagrangian submanifold.

Every coisotropic submanifold is endowed with a characteristic foliation, also referred to
as a null foliation. In short, the leaves of the characteristic foliation of C are the integral
curves of the Hamiltonian vector fields of its defining functions.

All of our results pertain to linear coisotropic submanifolds in T ∗Tn. A d-codimensional
linear coisotropic is of the form C = Tn × {v1 · ξ = . . . = vd · ξ = 0} for vj ∈ Rn (ξ are
symplectically dual to x ∈ Tn). In this note, we show that

Theorem 1.1. Let C ⊂ T ∗Tn be any linear coisotropic submanifold. Then there exists a lin-

ear symplectomorphism Φ of T ∗Tn for which Φ(C) = C̃, where the leaves of the characteristic

foliation of C̃, projected down to Tn, are dense in standard subtori.

(A standard k-subtorus is any k-dimensional subtorus of Tn of the form Tk × {point}.)

2. Models associated to linear coisotropics

Let Tn = Rn/Zn. As coordinates on the symplectic manifold (T ∗Tn, ω), we take (x, ξ),
where ω = dξ ∧ dx. We study linear coisotropics in T ∗Tn, defined as follows:

Definition 2.1. A d-codimensional linear coisotropic submanifold C ⊂ T ∗Tn has the form

C = C(v1, . . . ,vd) = Tn
x × {v1 · ξ = . . . = vd · ξ = 0},

where {v1, . . . ,vd} ⊂ Rn is linearly independent over R.

A simple linear coisotropic is {ξ1 = . . . = ξd = 0}. In fact, locally every coisotropic is of
this form [1, Theorem 21.2.4].

We say C1(v1, . . . ,vd) is symplectically equivalent to C2(w1, . . . ,wd) if there exists P ∈
GLn(Z) such that Pvj = wj for each j. Such a P descends to a diffeomorphism of the torus,
which then lifts to a symplectomorphism of T ∗Tn mapping C1 to C2.

With the goal of finding ‘model’ linear coisotropics, we first consider the special case where
vj ∈ Qn. Consider the rational linear coisotropic C(v1, . . . ,vd). We may clear denominators
and take the vj ∈ Zn. We identify C with the matrix C = (v1| . . . |vd), and call this a
representation of C. Since the vj are independent, C has rank d. Equivalently, the vj are a
basis for a rank d sublattice of Zn.

Proposition 2.2. Let D be a PID, and let A ∈ Mn×d(D) have rank d. Then there exist
invertible P ∈Mn×n(D), Q ∈Md×d(D) such that PAQ = (a1e1| . . . |aded), where all aj 6= 0.
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This result is adapted from [2, Section 3.7]. Thus, there exists P ∈ GLn(Z), Q ∈ GLd(Z)
for which PCQ has the diagonal form described in the proposition. Note that (a1e1| . . . |aded)
represents the coisotropic {ξ1 = . . . = ξd = 0}. The right multiplication byQmerely amounts
to a change of basis for the aforementioned rank d sublattice, so C and CQ represent the
same coisotropic. Hence, the existence of P tells us that C is symplectically equivalent to
the ‘rational model’ {ξ1 = . . . = ξd = 0}; and any two d-codimensional rational linear
coisotropics are equivalent, as they are both equivalent to this model.

Next, we allow vj ∈ Rn. Given an arbitrary linear coisotropic C(v1, . . . ,vd), let O denote
the set of leaf closures in the foliation of C, and let L ∈ O. In the rational case, leaves are
a priori closed. This implies that πTnL , the projection of the (closed) leaf onto the torus,
is a d-dimensional subtorus. The rational coisotropic is equivalent to {ξ1 = . . . = ξd = 0},
whose projected leaves are

πTnL = {(x1, . . . , xd, cd+1, . . . , cn), xj ∈ S1}.

for any choice of the constants cj.

Definition 2.3. A standard k subtorus in Tn is a subtorus of the form Tk ×{point} ⊂ Tn.

So the d-codimensional rational model is foliated by standard d subtori. If the vi are not
assumed to be rational, then πTnL are subtori of dimension k ≥ d. We find ‘models’ for
arbitrary linear coisotropics, in two steps.

Lemma 2.4. We can express each vi, 1 ≤ i ≤ d, as a linear combination

vi =

ki∑
j=1

αi
jw

i
j

such that (1) for each i, {wi
1, . . . ,w

i
ki
} ⊂ Zn is independent, and (2) for each i, the coeffi-

cients αi
j ∈ R are Q-independent.

Proof. The proof is the same for each vi, so fix i and let vi =: v = (v1 · · · vn)t. Consider
the subspace spanQ{v1, . . . , vn} ⊂ RQ, where RQ is the space of reals over the rationals. The
subspace is finite dimensional; say it has dimension k ≤ n. Any maximal Q-independent
subset of the spanning set {v1, . . . , vn} is a basis. The argument is analogous for any basis
obtained this way, so WLOG take the basis {v1, . . . , vk}. Certainly, for each i in 1 ≤ i ≤ n,
there exists a unique k-tuple (ci1, . . . , c

i
k) ∈ Zk (in Zk, as opposed to Qk, after clearing

denominators and recalibrating the basis) for which vi =
∑k

j=1 c
i
jv

j.

We know that for 1 ≤ i ≤ k, cii = 1 and cij = 0 for j 6= i. In general, we have

v =

v1...
vn

 =


∑k

j=1 c
1
jv

j

...∑k
j=1 c

n
j v

j

 =
k∑

j=1

vj

c
1
j
...
cnj

 .

Let αj := vj; since the vj, 1 ≤ j ≤ k, are Q-independent (being a basis), this choice

of αj fulfills condition (2). Also, let wj :=
(
c1j · · · cnj

)t ∈ Zn. It is clear that {wj}kj=1 is
linearly independent: if we were to write the n × k matrix (w1| . . . |wk), the k × k minor
matrix formed with the first k rows would just be the identity matrix. So condition (1) is
satisfied. �
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The decomposition in the lemma is not unique. For example, suppose all entries in vj are
Q-independent. Then for any A ∈ GLn(Z), we may write vj as a linear combination of the
columns of A, with the entries of A−1vj being the coefficients.

Lemma 2.5. Assume πTnL is a k-dimensional subtorus. Then there exists independent
{u1, . . . ,uk} ⊂ Zn and for each i, 1 ≤ i ≤ d, there exist βi

m ∈ R (1 ≤ m ≤ k) for which

(2.1) vi =
k∑

m=1

βi
mum.

For fixed i, 1 ≤ i ≤ d, the coefficients βi
m may not be Q-independent: see Example 2.7.

Proof. After decomposing each vi, 1 ≤ i ≤ d, as in Lemma 2.4, we next pool all the wi
j

together to obtain the set S = {wi
j}1≤i≤d,1≤j≤ki consisting of as many as

∑d
i=1 ki distinct

vectors. Then we trim S by finding any maximal linearly independent subset S ′; S ′ must
contain exactly k elements, because πTnL was assumed to be k-dimensional. We relabel
elements and write S ′ = {u1, . . . ,uk}.

Then S ′ is a basis for spanR(S). For each i, vi ∈ spanR{wi
1, . . . ,w

i
ki
} ⊂ spanR(S). Thus,

each vi can be written as a linear combination of the elements of S ′. �

This leads to our main result.

Theorem 2.6. Let C = C(v1, . . . ,vd) for v1, . . . ,vd ∈ Rn. Suppose that πTnL is k-
dimensional. Then there exists a linear symplectomorphism Φ : T ∗Tn → T ∗Tn such that

Φ(C) = C̃, where the leaves of the null foliation of C̃, projected down to the torus, are

dense in the standard k-dimensional subtori of Tn. (That is, C̃ = C(ṽ1, . . . , ṽd), where
ṽi ∈ Rk × {0} ⊂ Rn.)

Proof. According to Lemma 2.5, for each i, 1 ≤ i ≤ d, we may write vi =
∑k

m=1 β
i
mum, for

real coefficients βi
m. Then we have

C =

{
k∑

m=1

β1
mum · ξ = . . . =

k∑
m=1

βd
mum · ξ = 0

}
.

We then form the rank k matrix (u1| . . . |uk), and (possibly after changing bases for the
sublattice of Zn generated by {u1, . . . ,uk}) convert it to the normal form (a1e1| . . . |akek),
from which arises the coisotropic

C̃ = (ṽ1, . . . , ṽd), ṽi :=
k∑

m=1

βi
mamem.

Since (u1| . . . |uk) is converted to (a1e1| . . . |akek), there exists P ∈ GLn(Z) such that

(Pu1| . . . |Puk) = (a1e1| . . . |akek).

Define Φ : (x, ξ) 7−→
(
Px, (P−1)

t
ξ
)

, a linear symplectomorphism of T ∗Tn. It remains to

show that Φ maps C to C̃. Suppose (x, ξ) ∈ C. Then

ṽi ·
(
P−1

)t
ξ =

k∑
m=1

βi
mamem ·

(
P−1

)t
ξ =

k∑
m=1

βi
mP

−1(amem) · ξ =
k∑

m=1

βi
mum · ξ = vi · ξ = 0,
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as required.

Finally, since the last n− k entries of each ṽi are zero, the projected leaf closures of C̃ are
the standard k-subtori. �

Example 2.7. Consider the coisotropic C(v1,v2) with v1 = (1 0 π π)t, v2 = (e 1 e e)t. By
the method in the proof of the theorem, we may produce

C̃(ṽ1, ṽ2), ṽ1 = (1 0 π 0)t, ṽ1 = (e 1 e 0)t,

which is symplectically equivalent to C, and whose foliation is by standard 3-subtori πT4L =
{(x1, x2, x3, c4)}.

Let C ⊂ T ∗Tn be any d-codimensional linear coisotropic submanifold, so that C is foliated,
in Tn, by (possibly nonstandard) k-dimensional subtori (d ≤ k).

Definition 2.8. Let M be a linear coisotropic that is symplectically equivalent to C. If M
is of the form {u1 · ξ = . . . = ud · ξ = 0}, where uj ∈ Rk × {0}, then we call M a model
coisotropic associated with C.

Each leaf in the foliation of any model coisotropic associated with C, projected to the
base, is dense in a standard k-dimensional subtorus Tk×{point}. Theorem 2.6 tells us that
all linear coisotropics have an associated model. Careful inspection of the example shows
that models associated with a given linear coisotropic are not unique.
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